Improvement of Endoglucanase Activity in Penicillium oxalicum ID10-T065 Mutated by Ultra Violet Irradiation and Ethidium Bromide

Asnany Caniago, Wibowo Mangunwardoyo, Sukma Nuswantara, Puspita Lisdiyanti


Penicillium sp. is known as filamentous fungi that produce complete cellulase. Cellulase. This study aims to improve endoglucanase activity of Penicillium oxalicum ID010-T065 by mutated with ultra violet irradiation (with dose of 0.1 J/cm2, 15 cm), ethidium bromide (10 µg/mL, 1 hour) and combination of both mutagens. The endoglucanase activity of all mutants was higher than that of the wild type (1.03 U/mL). Mutant UVEB-42 exposed to combine mutation showed the highest endoglucanase activity (2.76 U/mL) with a 2.70 fold increase. Mutant EB-45 (1.83 U/mL) exposed to ethidium bromide solution showed a 1.8 fold increase. Mutant UV-13 (1.72 U/mL) exposed to UV irradiation for 3 minutes showed a 1.7 fold increase. All mutants have optimum endoglucanase activity at 50 °C. Mutant UVEB-53 showed the highest thermostability by retaining 86 % of endoglucanase activity at 90 °C. The gene analysis of the endoglucanase I gene showed 3 bases mutated at mutant UV-13 and UVEB-53 that changed proline to serine. Mutant EB-45 showed 4 bases mutated that changed valine to glysine and proline to serine. Two bases mutated at Mutant UVEB-53 changed proline to serine. Bases mutated in eg1 gene could influenced the enhance of enzym activity in mutant.


endoglucanase; mutation; ultra violet; ethidium bromide; Penicillium

Full Text:



Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410.

Beguin, P. & Aubert, J.P. (1994). The biological degradation of cellulosa. FEMS Microbiology Reviews, 13 (1), 25-58.

Cenis, J. L. (1992). Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Research, 20(9), 2380.

Chaabouni, S. E., Mechichi, T., Limam, F., & Marzouki, N. (2005). Purification and characterization of two low molecular weight endoglucanases produced by Penicillium occitanis mutant Pol 6. Applied Biochemistry and Biotechnology, 125(2), 99-112.

Chand, P., Aruna, A., Maqsood, A. M., & Rao, L. V. (2005). Novel mutation method for increased cellulase production. Journal of Applied Microbiology, 98(2), 318-323.

Cupples, C.G. (2001). Mutagenesis mechanisms. Encyclopedia of Life Sciences: 1—6.

Chikamatsu, G., Shirai, K., Kato, M., Kobayashi, T. & Tsukagoshi, N. (1999). Structure and expression properties of the endo-β-1,4-glucanase A gene from the filamentous fungus Aspergillus nidulans. FEMS Microbiology Letter, 175, 234-239.

De Castro, A. M., Ferreira, M. C., da Cruz, J. C., Pedro, K. C. N. R., Carvalho, D. F., Leite, S. G. F., & Pereira, N. (2010). High-yield endoglucanase production by Trichoderma harzianum IOC-3844 cultivated in pretreated sugarcane mill byproduct. Enzyme Research, 1-8.

Das, A., Ghosh, U., Mohapatra, P. K. D., Pati, B. R., & Mondal, K. C. (2012). Study on Thermodynamics and Adsorption kinetics of Purified endoglucanase (CMCase) from Penicillium notatum NCIM NO-923 produced under mixed solid-state fermentation of waste cabbage and Bagasse. Brazilian Journal of Microbiology, 43(3), 1103-1111.

Ding, S. J., Ge, W. & Buswell, J.A. (2001). Endoglucanase I from edible straw mushroom Volvariella volvacea: Purification, characterization, cloning and expression. Europe Journal of Biochemistry, 268, 5687-5695.

Doelle, H.W. (1994). Microbial Process Development. World Scientific Publishing. Singapore: xiii + 307.

Elias, M., Wieczorek, G., Rosenne, S., & Tawfik, D. S. (2014). The universality of enzymatic rate–temperature dependency. Trends in Biochemical Sciences, 39(1), 1-7.

Ennis, D.G. (2001). Mutagenesis. Encyclopedia of Life Sciences :1—8.

Fawzi, E. M., & Hamdy, H. S. (2011). Improvement of carboxymethyl cellulase production from Chaetomium cellulolyticum NRRL 18756 by mutation and optimization of solid state fermentation. African Journal of Microbiology Research, 5(26), 4687-4696.

Florencio, C., Couri, S., & Farinas, C. S. (2012). Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains. Enzyme Research, 1-7.

Haggett, K. D., Gray, P. P., & Dunn, N. W. (1979). Crystalline cellulose degradation by a strain of Cellulomonas and its mutant derivatives. European Journal of Applied Microbiology and Biotechnology, 8(3), 183-190.

Heinzelman, P., Snow, C. D., Smith, M. A., Yu, X., Kannan, A., Boulware, K., ... & Arnold, F. H. (2009). SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability. Journal of Biological Chemistry, 284(39), 26229-26233.

Irfan, M., Javed, J. & Syed, Q. (2011). UV mutagenesis of Aspergillus niger for enzyme production in submerged fermentation. Pakistan Journal Biochemical and Molecular, 44(4), 137-140.

Javed, M. M., Haq, I. U., Mariyam, I. (2011). Multiple mutagenesis for the over expression of cellulase in Humicola insolens. Pakistan Journal of Botany, 43(1), 669-677.

Jeya, M., Joo, A. R., Lee, K. M., Sim, W. I., Oh, D. K., Kim, Y. S., ... & Lee, J. K. (2010). Characterization of endo-β-1, 4-glucanase from a novel strain of Penicillium pinophilum KMJ601. Applied Microbiology and Biotechnology, 85(4), 1005-1014.

Juturu, V., & Wu, J. C. (2014). Microbial cellulases: engineering, production and applications. Renewable and Sustainable Energy Reviews, 33, 188-203.

Kader, A. J., & Omar, O. (1998). Isolation of cellulolytic fungi from Sayap-Kinabalu Park, SABAH. ASEAN Review of Biodiversity and Environmental Conservation (ARBEC), 2, 1-6.

Kim, D. M., Cho, E. J., Kim, J. W., Lee, Y. W., & Chung, H. J. (2014). Production of cellulases by Penicillium sp. in a solid-state fermentation of oil palm empty fruit bunch. African Journal of Biotechnology, 13(1), 145.

Korogodin, V.I., Korogodina, V.L., Fajszi, C., Chepurnov, N., Tsenova, M. & Simonyan, N.V. (1991). On the dependence of spontaneous mutation rates on the functional state of genes.Yeast, 7, 105-117.

Kumar, A.K. (2015). UV mutagenesis treatment for improved production of endoglucanase and B-glucosidase from newly isolated thermotolerant Actinomycetes, Streptomyces griseoaurantiacus. Bioresources and Bioprocessing, 2 (22), 1-10.

Le Crom, S., Schackwitz, W., Pennacchio, L., Magnuson, J.K., Culley, D.E., Collet, J.R., ... , & Margeot, A. 2009. Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. PNAS, 106(38), 16151-16156.

Leylaie, S., Sabbagh, S.K. & Tajickghanbari, M.A. (2013). Expression analyses of endoglucanase gene in Penicillium oxalicum and Trichoderma viride. Mycology of Iranica, 1(1), 27-33.

Li, X. H., Yang, H. J., Roy, B., Park, E. Y., Jiang, L. J., Wang, D., & Miao, Y. G. (2010). Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultra violet. Microbiological Research, 165(3), 190-198.

Liu, G., Zhang, L., Qin, Y., Zou, G., Li, Z., Yan, X., ... & Zhang, J. (2013). Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes. Scientific Reports, 3, 1-7.

Lynd LR, Weimer PJ, Van-zyl WH, Pretorius IS. 2002. Fingerprinting Trichoderma reesei hydrolases in a commercial cellulase. Microbiology and Molecular Biology Reviews, 66, 506-577.

Vinzant, T. B., Adney, W. S., Decker, S. R., Baker, J. O., Kinter, M. T., Sherman, N. E., ... & Himmel, M. E. (2001). Fingerprinting Trichoderma reesei hydrolases in a commercial cellulase preparation. Applied Biochemistry and Biotechnology, 91(1-9), 99-107.

Madigan, M., Martinko, J., Stahl, D. & Clark, D. (2012). Brock Biology of Microorganisms ed 13th . Pearson Education Inc., San Fransisco,1—1105.

Martinez, D., Berka, R.M., Henrissat, B. Saloheimo, M., Arvas, M., Baker, S.E., ... & T.S. Brettin. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology 26(5), 553—560.

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428.

Meera, B., Vanitha, M. C., Ramani, G., Manjula, A., & Gunasekaran, P. (2011). Cloning and expression of an intronless gene encoding endoglucanase from Aspergillus fumigatus MKU 1. Indian Journal of Biotechnology, 10(4), 480-486.

Naim, S., & Jamil, A. (2007). Production of endoglucanase from a thermophilic fungus. Pakistan Journal of Agricultural Sciences (Pakistan), 44(1), 59-63.

Picart, P., Diaz, P., & Pastor, F. I. J. (2007). Cellulases from two Penicillium sp. strains isolated from subtropical forest soil: production and characterization. Letters in Applied Microbiology, 45(1), 108-113.

Ribeiro, O., Magalhaes, F., Aguiar, T.Q., Wiebe, M.G., Penttila. M. & Domingues, L. 2013. Random and direct mutagenesis to enhance protein secretion in Ashbya gossypii. Bioengineered 4, (5), 1-10.

Seiboth, B., Ivanova, C., & Seidl-Seiboth, V. (2011). Trichoderma reesei: a fungal enzyme producer for cellulosic biofuels. Rijeka: INTECH Open Access Publisher, 309-340.

Shafique, S., Bajwa, R., & Shafique, S. (2011). Strain improvement in Trichoderma viride through mutation for overexpression of cellulase and characterization of mutants using random amplified polymorphic DNA (RAPD). African Journal of Biotechnology, 10(84), 19590-19597.

Smith, K.C. (1992). Spontaneous mutagenesis: Experimental, genetic and other factor. Mutation Research, 277, 139-162.

Syafriana, V., Nuswantara, S., Mangunwardoyo, M. & Lisdiyanti, P. (2014). Enhancement of β-glucosidase activity in Penicillium sp. by random mutation with ultra violet and ethyl methyl sulfonate. Annales Bogoriensis, 18(2), 27-33.

Syed, S., Riyaz-Ul-Hassan, S., & Johri, S. (2013). A novel cellulase from an endophyte, Penicillium sp. NFCCI 2862. American Journal of Microbiological Research, 1(4), 84-91.

Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2005). Microbial cellulases-production, applications and challenges. Journal of Scientific and Industrial Research, 64(11), 832-844.

Teather, R. M., & Wood, P. J. (1982). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology, 43(4), 777-780.

Vieille, C., & Zeikus, G. J. (2001). Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews, 65(1), 1-43.

Voutilainen, S. (2010). Fungal thermostable cellobiohydrolases. Characterization and protein engineering studies. Dissertation. Helsinki (Finland): University of Jyvaskyla.

Vu, V. H., Pham, T. A., & Kim, K. (2009). Fungal strain improvement for cellulase production using repeated and sequential mutagenesis. Mycobiology, 37(4), 267-271.

Wei, X. M., Qin, Y. Q., & Qu, Y. (2010). Molecular cloning and characterization of two major endoglucanases from Penicillium decumbens. Journal of Microbiology and Biotechnology, 20(2), 265-270.

Wu, Z., Tsumura, Y., Blomquist, G., & Wang, X-R. (2003). 18S rRNA gene variation among common airborne fungi, and development of specific oligonucleotide probes for the detection of fungal isolates. Applied and Environmental Microbiology, 69(9), 5389-5397.

Yazdi, M. T., Woodward, J. R., & Radford, A. (1990). The cellulase complex of Neurospora crassa: activity, stability and release. Microbiology, 136(7), 1313-1319.

Yoon, J. H., Hong, S. B., Ko, S. J., & Kim, S. H. (2007). Detection of extracellular enzyme activity in Penicillium using chromogenic media. Mycobiology, 35(3), 166-169.



  • There are currently no refbacks.

Copyright (c) 2016 ANNALES BOGORIENSES

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Annales Bogorienses Indexed by :





Statistic Visitors