Medium Optimization for Antimicrobial Production By Newly Screened Lactic Acid Bacteria

Rohmatussolihat Rohmatussolihat, Puspita Lisdiyanti, Yopi Yopi, Yantyati Widyastuti, Endang Sukara

Abstract


Lactic acid bacteria (LAB) are important for prevention of spoilage and pathogenic bacterial growth in foods due to their ability to generate antimicrobial substances. The objective of this study was to screen LAB for antimicrobial activity and to optimize culture medium for antimicrobial production using Response Surface Methodology (RSM) with Central Composite Design (CCD). Optimization of antimicrobial production of selected LAB was conducted with different combinations of glucose, NaCl, inoculum, and temperature. Our experimental results showed that from 129 LAB isolates, 55 showed significant inhibition against Bacillus subtilis, Escherichia coli, Micrococcus luteus, Staphylococcus aureus, Aspergillus niger, and Candida albicans. No isolates inhibited the growth of Aspergillus flavus. Lactobacillus plantarum LIPI13-2-LAB011 was selected for further study on culture medium optimization to inhibit the growth of C. albicans. From statistical analysis, the production of antimicrobial substances was significantly influenced by temperature, NaCl, and concentration of glucose. Furthermore, the optimum concentrations of glucose, concentration of inoculum, temperature, and NaCl were 1.63 %, 3.03%, 33.74°C, and 3.4%, respectively, with a maximum predicted inhibition index of 1.916, which increased 3.56-fold compared to that obtained in medium before optimization processes. The result was confirmed as when the optimum concentration of nutritions used, the inhibition index increased 3.12-fold.


Keywords


Antimicrobial, Lactobacillus plantarum, Response Surface Methodology

Full Text:

PDF

References


Al-Allaf, M. A. H., Al-Rawi, A. M. M., & Al-Mola, A. T. (2009). Antimicrobial activity of lactic acid bacteria isolated from minced beef meat against some pathogenic bacteria. Iraqi Journal of Veterinary Sciences, 23(3), 115-117.

Badis, A., Guetarni, D., Boudjema, B. M., Henni, D. E., & Kihal, M. (2004). Identification and technological properties of lactic acid bacteria isolated from raw goat milk of four Algerian races. Food Microbiology, 21(5), 579-588.

Balouiri, M., MoulayS, &Saad K. I. 2016. Methods for in vitro evaluatingantimicrobialactivity:Areview . Journal ofPharmaceuticalAnalysis 6. 71–79.

Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977.

Bromberg, R., Moreno, I., Zaganini, C. L., Delboni, R. R., & Oliveira, J. D. (2004). Isolation of bacteriocin-producing lactic acid bacteria from meat and meat products and its spectrum of inhibitory activity. Brazilian Journal of Microbiology, 35(1-2), 137-144.

Chauhan, K., Trivedi, U., & Patel, K. C. (2007). Statistical screening of medium components by Plackett–Burman design for lactic acid production by Lactobacillus sp. KCP01 using date juice. Bioresource Technology, 98(1), 98-103.

Cizeikiene, D., Juodeikiene, G., Paskevicius, A., & Bartkiene, E. (2013). Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread. Food Control, 31(2), 539-545.

Dalié, D. K. D., Deschamps, A. M., & Richard-Forget, F. (2010). Lactic acid bacteria–Potential for control of mould growth and mycotoxins: A review. Food Control, 21(4), 370-380.

Darwazeh, A. M. G., Lamey, P. J., Samaranayake, L. P., MacFarlane, T. W., Fisher, B. M., Macrury, S. M., & MacCuish, A. C. (1990). The relationship between colonisation, secretor status and in-vitro adhesion of Candida albicans to buccal epithelial cells from diabetics. Journal of Medical Microbiology, 33(1), 43-49.

Desniar, M. Rusmana, I., Suwanto, A. & Mubarik,N.R. (2013). Characterization of lactic acid bacteria isolated from an Indonesian fermented fish (bekasam) and their antimicrobial activity against pathogenic bacteria. Emirates Journal of Food and Agriculture, 489-494.

Foster, T. J. (2005). Immune evasion by staphylococci. Nature Reviews Microbiology, 3(12), 948.

Gálvez, A., Abriouel, H., López, R. L., & Omar, N. B. (2007). Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology, 120(1-2), 51-70.

Galvez, A., López, R. L., Abriouel, H., Valdivia, E., & Omar, N. B. (2008). Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Critical Reviews in Biotechnology, 28(2), 125-152.

Ghrairi, T., Frere, J., Berjeaud, J. M., & Manai, M. (2008). Purification and characterisation of bacteriocins produced by Enterococcus faecium from Tunisian rigouta cheese. Food Control, 19(2), 162-169.

Himelbloom, B., Nilsson, L., & Gram, L. (2001). Factors affecting production of an antilisterial bacteriocin by Carnobacterium piscicola strain A9b in laboratory media and model fish systems. Journal of Applied Microbiology, 91(3), 506-513.

Hwanhlem, N., Buradaleng, S., Wattanachant, S., Benjakul, S., Tani, A., & Maneerat, S. (2011). Isolation and screening of lactic acid bacteria from Thai traditional fermented fish (Plasom) and production of Plasom from selected strains. Food Control, 22(3-4), 401-407.

Kadariya, J., Smith, T. C., & Thapaliya, D. (2014). Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. BioMed Research International, 2014. Article ID 827965, 9 pageshttp://dx.Doi.org/10.1155/2014/827965.

Khurana, S., Kapoor, M., Gupta, S., & Kuhad, R. C. (2007). Statistical optimization of alkaline xylanase production from Streptomyces violaceoruber under submerged fermentation using response surface methodology. Indian Journal of Microbiology, 47(2), 144-152.

Kumar, M., Jain, A. K., Ghosh, M., & Ganguli, A. (2012). Statistical optimization of physical parameters for enhanced bacteriocin production by L. casei. Biotechnology and Bioprocess Engineering, 17(3), 606-616.

Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A., & Gobbetti, M. (2000). Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appliedand Environmental Microbiology, 66(9), 4084-4090.

Leal-Sánchez, M. V., Jiménez-Díaz, R., Maldonado-Barragán, A., Garrido-Fernández, A., & Ruiz-Barba, J. L. (2002). Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10. Applied and Environmental Microbiology, 68(9), 4465-4471.

Liong, M. T., & Shah, N. P. (2005). Production of organic acids from fermentation of mannitol, fructooligosaccharide and inulin by a cholesterol removing Lactobacillus acidophilus strain. Journalof Applied Microbiology, 99(4), 783-793.

Magnusson, J. (2003). Antifungal activity of lactic acid bacteria. [dissertation]. Uppsala: Department of Microbiology, Swedish University of Agricultural.

Malheiros, P. S., Sant’Anna, V., Todorov, S. D., & Franco, B. D. (2015). Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. sakei2a. Brazilian Journal of Microbiology, 46(3), 825-834.

Martinez, R. C. R., Wachsman, M., Torres, N. I., LeBlanc, J. G., Todorov, S. D., & de Melo Franco, B. D. G. (2013). Biochemical, antimicrobial and molecular characterization of a noncytotoxic bacteriocin produced by Lactobacillus plantarum ST71KS. Food Microbiology, 34(2), 376-381.

Martins, N., Ferreira, I. C., Barros, L., Silva, S., & Henriques, M. (2014). Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia, 177(5-6), 223-240.

Miyadoh, S.,&Otoguro M. 2004.Workshop on Isolation Method and Clasification of Actinomycetes. Bogor (ID): LIPI Bioteknologi.

Mu, W., Chen, C., Li, X., Zhang, T., & Jiang, B. (2009). Optimization of culture medium for the production of phenyllactic acid by Lactobacillus sp. SK007. Bioresource Technology, 100(3), 1366-1370.

Noordiana, N., Fatimah, A. B., & Mun, A. S. (2013). Antibacterial agents produced by lactic acid bacteria isolated from Threadfin Salmon and Grass Shrimp. International Food Research Journal, 20(1), 117-124.

Pepe, O., Blaiotta, G., Moschetti, G., Greco, T., & Villani, F. (2003). Rope-producing strains of Bacillus spp. from wheat bread and strategy for their control by lactic acid bacteria. Applied and Environmental Microbiology, 69(4), 2321-2329.

Person, A. K., Chudgar, S. M., Norton, B. L., Tong, B. C., & Stout, J. E. (2010). Aspergillus niger: an unusual cause of invasive pulmonary aspergillosis. Journal of Medical Microbiology, 59(7), 834-838.

Rajendran, A., & Thangavelu, V. (2007). Sequential optimization of culture medium composition for extracellular lipase production by Bacillus sphaericus using statistical methods. Journal of Chemical Technology and Biotechnology, 82(5), 460-470.

Rohmatussolihat. (2013).Seleksi dan optimasi bakteri asam laktat penghasil senyawa antikapang. [Tesis]. Institut Pertanian Bogor, Bogor.

Saranraj, P. (2012). Microbial spoilage of bakery products and its control by preservatives. International Journal of Pharmaceutical & Biological Archive, 3(1), 38-48.

Saranya, S., & Hemashenpagam, N. (2011). Antagonistic activity and antibiotic sensitivity of lactic acid bacteria from fermented dairy products. Advances in Applied Science Research, 2(4), 528-534.

Settanni, L., Valmorri, S., Suzzi, G., & Corsetti, A. (2008). The role of environmental factors and medium composition on bacteriocin-like inhibitory substances (BLIS) production by Enterococcus mundtii strains. Food Microbiology, 25(5), 722-728.

Taheri, P., Samadi, N., Ehsani, M. R., Khoshayand, M. R., & Jamalifar, H. (2012). An evaluation and partial characterization of a bacteriocin produced by Lactococcus lactis subsp lactis ST1 isolated from goat milk. Brazilian Journal of Microbiology, 43(4), 1452-1462.

Tan, P., Peh, K., Gan, C., & Liong, M. T. (2014). Bioactive dairy ingredients for food and non-food applications. Acta Alimentaria, 43(1), 113-123.

Todorov, S. D. (2008). Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K to Listeria sp. Brazilian Journal of Microbiology, 39(1), 178-187.

Todorov, S. D., Prévost, H., Lebois, M., Dousset, X., LeBlanc, J. G., & Franco, B. D. (2011). Bacteriocinogenic Lactobacillus plantarum ST16Pa isolated from papaya (Carica papaya)—From isolation to application: Characterization of a bacteriocin. Food Research International, 44(5), 1351-1363.

Valerio, F., De Bellis, P., Lonigro, S. L., Visconti, A., & Lavermicocca, P. (2008). Use of Lactobacillus plantarum fermentation products in bread-making to prevent Bacillus subtilis ropy spoilage. InternationalJournal of Food Microbiology, 122(3), 328-332.

Vatanyoopaisarn, S., Prapatsornwattana, K., Kuhakongkeat, T., & Phalakornkule, C. (2011). Potential use of lactic acid bacteria with bacteriocin-like activity against Staphylococcus aureus as dual starter cultures in Thai fermented sausage" Sai Krok Prew.". International Food Research Journal, 18(2), 697-704.

Vincent, C., Boerlin, P., Daignault, D., Dozois, C. M., Dutil, L., Galanakis, C., Reid-Smith, R.J., Tellier, P.P., Tellis, P.A., Ziebell,K.,& Manges, A. R. (2010). Food reservoir for Escherichia coli causing urinary tract infections. Emerging Infectious Diseases, 16(1), 88.

Von Eiff, C., Kuhn, N., Herrmann, M., Weber, S., & Peters, G. (1996). Micrococcus luteus as a cause of recurrent bacteremia. ThePediatric Infectious Disease Journal, 15(8), 711-713.

Walsh, T. J., Anaissie, E. J., Denning, D. W., Herbrecht, R., Kontoyiannis, D. P., Marr, K. A., Morrison, V.A., Segal, B.H., Steinbach, W.J., Stevens,D.A.,& van Burik, J. A. (2008). Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. ClinicalInfectious Diseases, 46(3), 327-360.

Wang, Z. W., & Liu, X. L. (2008). Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using response surface methodology. Bioresource Technology, 99(17), 8245-8251.

Wessels, S., Axelsson, L., Hansen, E. B., De Vuyst, L., Laulund, S., Lähteenmäki, L., Lindgren, S., Mollet, B., Salminen,S.,& von Wright, A. (2004). The lactic acid bacteria, the food chain, and their regulation. Trends in Food Science & Technology, 15(10), 498-505.

Xie, Y., An, H., Hao, Y., Qin, Q., Huang, Y., Luo, Y., & Zhang, L. (2011). Characterization of an anti-Listeria bacteriocin produced by Lactobacillus plantarum LB-B1 isolated from koumiss, a traditionally fermented dairy product from China. Food Control, 22(7), 1027-1031.

Yang, E., Fan, L., Jiang, Y., Doucette, C., & Fillmore, S. (2012). Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. Amb Express, 2(1), 48.

Yu, L., Lei, T., Ren, X., Pei, X., & Feng, Y. (2008). Response surface optimization of l-(+)-lactic acid production using corn steep liquor as an alternative nitrogen source by Lactobacillus rhamnosus CGMCC 1466. Biochemical Engineering Journal, 39(3), 496-502.

Yuan, L. L., Li, Y. Q., Wang, Y., Zhang, X. H., & Xu, Y. Q. (2008). Optimization of critical medium components using response surface methodology for phenazine-1-carboxylic acid production by Pseudomonas sp. M-18Q. Journal of Bioscience and Bioengineering, 105(3), 232-237.




DOI: http://dx.doi.org/10.14203/ab.v22i1.322

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 ANNALES BOGORIENSES

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Annales Bogorienses Indexed by :

     

  

 

 

Statistic Visitors