Medium Chain and Long Chain Alkanes Hydroxylase Producing Whole Cell Biocatalyst From Marine Bacteria

Ahmad Thontowi, Elvi Yetti, Yopi Yopi


Alkanes are  major component of crude oil that could be hydrolyzed by the enzyme of alkane hydroxylase. The are three types of alkane hydroxylase based on the chain length of alkane such as short-chain length/SCL (C2-C4), medium-chain length/MCL (C5-C17), and long-chain length/LCL (C>18). The aims of this study were to characterize and identify alkanes-degrading bacteria from these bacteria. The 30 strains from marine were grown on MCL (Pentane-C5H12, Decane-C10H22, and Pentadecane-C15H32) and LCL (n-Paraffin-C12H19C17 and branch of Pristane-C19H40). The study showed twenty-nine isolates have the ability to degrade alkanes compounds, whereas 14 isolates have grown ability on MCL and LCL medium, 11 isolates have the ability to grow on MCL and n-LCL, 3 isolates have the ability only to grow on MCL medium and 1 isolate has the ability only grow on n-LCL medium. The growth test result indicated that 29 isolates have medium-chain alkane monooxygenase and long-chain alkane hydroxylase. Based on 16S rDNA gene analysis, we obtained twenty nine of oil- degrading bacteria, namely a-proteobacteria (57 %), g-proteobacteria (30 %), Flavobacteria (7 %), Bacilli (3%) and Propionibacteriales (3 %). g-Proteobacteria and a-proteobacteria which seems to play an important role in the alkane biodegradation.


alkane, alkane hydroxylase, marine, bacteria

Full Text:



Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, & D. J. Lipman. (1997). Gapped BLAST and PSI-BLAST: a New Generation of Protein Database Search Programs. Nucleic Acids Research, 25, 3389-3402.

Anan'ina, L.N., Plotnikova, E.G., Gavrish, E.I., Demakov, V.A., & Evtushenko, L.I. (2007). Salinicola socius gen. nov., sp. nov., a moderately halophilic bacterium from a naphthalene-utilizing microbial association. Mikrobiologiia, 76(3), 369-76.

Bibi, F., Jeong, J.H., Chung, E.J., Jeon, C.O., & Chung, Y.R. (2014). Labrenzia suaedae sp. nov., a marine bacterium isolated from a halophyte, and emended description of the genus Labrenzia. International Journal of Systematic and Evolutionary Microbiology, 64, 1116-1122. doi:

Biebl, H., Pukall, R., Lunsdorf, H., Schulz, S., Allgaier, M., Tindall, B.J., & Wagner-Dobler, I. (2007). Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense. International Journal of Systematic and Evolutionary Microbiology, 57(Pt 5), 1095-1097.

Bihari, Z., Pettko-Szandtner, A., Csanadi, G., Balazs, M., Bar- tos, P., & Kesseru, P., et al. (2007). Isolation and characterization of a novel n-alkane-degrading strain, Acinetobacter haemolyticus AR-46. Z. Naturforsch C, 62, 285–295.

Bonin, P., Cravo-Laureau, C., Michotey, V., & Hirschler-Rea, A. (2004). The anaerobic hydrocarbon biodegrading bacteria: an overview. Ophelia, 58, 243–254.

Bottger, E.C. (1989). Rapid determination of bacterial ribosomal RNA sequences by direct sequencing of enzymatically amplified DNA, FEMS Microbiology Letters, 65, 171-176.

Cavalca, L., A. Hartmann, N. Rouard, & G., Soulas. (1999). Diversity of tfdC Gene: Distribution and Polymorphism Among 2,4-Dichlo-Rophenoxyacetic Acid Degrading Soil Bacteria. FEMS Microbiology Ecology, 29, 45–58.

Cerniglia, C.E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3:351–368.

Chaerun, S.K, Tazaki, K., Asada, R., Kogure, K. (2004). Bioremediation of coastal areas 5 years after the Nakhodka oil spill in the Sea of Japan: isolation and characterization of hydrocarbon-degrading bacteria. Environmental International, 30, 911–922.

Chen, C., Zheng, Q., Wang, Y.N., Yan, X.J., Hao, L.K., Du, X., & Jiao, N. (2010). Stakelama pacifica gen. nov., sp. nov., a new member of the family Sphingomonadaceae isolated from the Pacific Ocean. International Journal of Systematic and Evolutionary Microbiology, 60(Pt 12), 2857-61. doi: 10.1099/ijs.0.018945-0.

Cravo-Laureau, C., Matheron, R,, Cayol, J.L., Joulian, C., & Hirschler-Rea, A. (2004). Desulfatibacillum aliphaticivorans gen. nov., sp nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium. International Journal of Systematic and Evolutionary Microbiology, 54:77–83.

Doumenq, P., Aries, E., Asia, L., Acquaviva, M., Artaud, J., Gilewicz, M., Mille, G., & Bertrand, J.C. (2001). Influence of n-alkanes and petroleum on fatty acid composition of a hydrocarbonoclastic bacterium: Marinobacter hydrocarbonoclasticus strain 617. Chemosphere, 44, 519–528

Dyksterhouse, S. E., J. P. Gray, R. P. Herwig, J. C. Lara, & J. T. Staley. (1995). Cycloclasticus pugetii gen. nov., sp. nov., an Aromatic Hydrocarbon-Degrading Bacterium from Marine Sediments. International Journal of Systematic and Evolutionary Microbiology, 45(1), 116-123.

Engelhardt, M.A., Daly, K., Swannell, R.P., & Head, I.M. (2001). Isolation and characterization of a novel hydrocarbon-degrading, gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov. Journal of Applied Microbiology, 90, 237–247.

Fox, G.E, Wisotzkey, J.D., & Jurtshuk, P.J.R. (1992). How close is close: 16s rRNA sequence identity may not be sufficient to guarantee species identity. International Journal of Systematic and Evolutionary Microbiology, 90(2), 166-170.

Funhoff, E.G., Bauer, U., Garcia- Rubio, I., Witholt, B., & Van Beilen, J.B. (2006). CYP153A6, a soluble P450 oxygenase catalyzing terminal- alkane hydroxylation. Journal of Bacteriology, 188, 5220–5227.

Halsey, K. H., Sayavedra-Soto, L.A., Bottomley, P. J., & Arp, D.J. (2006). Site-directed amino acid substitutions in the hydroxylase alpha sub-unit of butane monooxygenase from Pseudomonas butanovora: implications for substrates knocking at the gate. Journal of Bacteriology, 188, 4962– 4969.

Hao, R., Lu, A., & Wang, G. (2004). Crude-oil-degrading thermophilic bacterium isolated from an oil field. Canadian Journal of Microbiology, 50, 175–182

Harayama, S., Kishira, H., Kasai, Y. & Shutsubo, K. (1999). Petroleum biodegradation in marine environments. Journal Molecular Microbiol and Biotechnol, 1, 63-70.

Harwati, U.T., Kasai, Y., Kodama, Y., Susilaningsih, D., & Watanabe, K. (2007). Characterization of diverse hydrocarbon-degrading bacteria isolated from Indonesia Seawater. Microbes and Environments, 22(4),1-4.

Head, I.M., Jones, D.M., & Roling, W.F. (2006). Marine microorganisms make a meal of oil. Nature Reviews Microbiology, 4, 173-182.

Higgins, D.G. & P.M., Sharp. (1988). CLUSTAL: a Package for Performing Multiple Sequence Alignment on a Microcomputer. Gene, 73, 237-244.

H.P. Bacosa, Z., Liu, & D.L., Erdner. (2015). Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters. Front Microbiology, 6, 1325. doi: 10.3389/fmicb.2015.01325.

Huo, Y.Y., Meng, F.X., Xu, L., Wang, C.S., 7 Xu, X.W. (2013). Salinicola peritrichatus sp. nov., isolated from deep-sea sediment. Antonie Van Leeuwenhoek. 104(1), 55-62. doi: 10.1007/s10482-013-9925-1.

Johnson, E. L., & Hyman, M. R. (2006). Propane and n-butane oxidation by Pseudomonas putida GPo1. Applied Environmental Microbiology, 72, 950-952.

Kostka, J.E., O. Prakash, W. A. Overholt, S. J. Green, G. Freyer, A. Canion, J. Delgardio, N. Norton, T. C. Hazen, & M. Huettel. (2011). Hydrocarbon Degrading Bacteria and the Bacterial Community Response in Gulf of Mexico Beach Sands Impacted by the Deepwater Horizon Oil Spill. Applied Environmental Microbiology, 77(22), 7962-7974.

Kotani, T., Yamamoto, T., Yuri- moto, H., Sakai, Y., & Kato, N. (2003). Propane monooxygenase and NAD+ -dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. Journal of Bacteriology. 185, 7120–7128.

Kotani, T., Yurimoto, H., Kato, N., & Sakai, Y. (2007). Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. Journal of Bacteriology, 189, 886–893.

Kumar, S., K. Tamura, & M. Nei. (2004). MEGA3: Integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment. Briefings Bioinformatics, 5, 150-163.

Kunihiro, N., Haruki, M., Takano, K., Morikawa, M., & Kanaya, S. (2005). Isolation and characterization of Rhodococcus sp. strains TMP2 and T12 that degrade 2,6,10,14-tetramethylpentadecane (pris- tane) at moderately low temperatures. Journal of Biotechnology, 115,129–136.

Labinger, J.A., & Bercaw, J.E. (2002). Understanding and exploiting C-H bond activation. Nature, 417, 507–514.

Lal, B., & Khanna, S. (1996). Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. Journal of Applied Bacteriology, 81, 355–362

Li, L., Liu, X., Yang, W., Xu, F., Wang, W., Feng, L., et al. (2008). Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. Journal Molecular Biology, 376, 453–465.

Liu, H., Xu, J., Liang, R., & Liu, J. Characterization of the Medium- and Long-Chain n- Alkanes Degrading Pseudomonas aeruginosa Strain SJTD-1 and Its Alkane Hydroxylase Genes. (2014). PLOS ONE, 9(8), e105506:1-14.

Maeng, J.H., Sakai, Y., Tani, Y., & Kato, N. (1996). Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1. Journal of Bacteriology, 178, 3695–3700.

Maier, T., Forster, H. H., Asperger, O., and Hahn, U. (2001). Molecular characterization of the 56- kDa CYP153 from Acinetobacter sp. EB104. Biochemical and Biophysical Research, 286(3), 652–658.

Militon C, Jézéquel R, Gilbert F, Corsellis Y, Sylvi L, Cravo-Laureau C, Duran R, Cuny P. (2015). Dynamics of bacterial assemblages and removal of polycyclic aromatic hydrocarbons in oil-contaminated coastal marine sediments subjected to contrasted oxygen regimes. Environmental Science and Pollution Research, 22,15260-15272. doi:

Naik PR, Sakthivel N. (2006). Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant- growth-promoting traits and antifungal potential. Research in Microbiology, 157:538–546.

Overholt WA, Green SJ, Marks KP, Venkatraman R, Prakash O, Kostka JE. (2013). Draft genome sequences for oil-degrading bacterial strains from beach sands impacted by the Deepwater Horizon oil spill. Genome An-nouncement, 1(6): e01015-13. doi:

Pace, N. (1997). A molecular view of microbiol diversity and the biosphere. Science, 276, 734-740.

Yakimov MM, Giuliano L, Denaro R, Crisafi E, Chernikova TN, Abraham WR, Luensdorf H, Timmis KN, & Golyshin PN. (2004). Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. International Journal of Systematic and Evolutionary Microbiology, 54, 141–148.

Quatrini P., Scaglione G., De Pasquale C., Riela S., & Puglia A. M. (2008), Isolation of Gram-positive nalkane degraders from a hydrocarbon-contaminated Mediterranean shoreline. Journal of Applied Microbiology, 104, 251-259.

Radwan SS, Sorkhoh NA, Felzmann H, & El-Desouky AF. (1996). Uptake and utilization of n-octacosane and n-nonacosane by Arthrobacter nicotianae KCC B35. Journal of Applied Bacteriology, 80, 370-374.

Raju, K., Sekar, J., & Vaiyapuri, R. P. (2015). Salinicola rhizosphaerae sp. nov., isolated from the rhizosphere of the mangrove Avicennia marina L. International Journal of Systematic and Evolutionary Microbiology, 66(2), 1074-1079.doi: 10.1099/ijsem.0.000837.

Rojo, F. (2009). Degradation of alkanes by bacteria. Environmental Microbiology, 11, 2477–2490.

Schneiker, S., Santos M.V.A., Bartels, D., Bekel, T., Brecht, M., Buhrmester, J., Chernikova, T.N., Denaro, R., Ferrer, M., Gertler, C., Goesmann, A., Golyshina, O.V., Kaminski, F., Khachane, A.N., Lang, S., Linke, B., McHardy, A.C., Meyer, F., Nechitaylo, T., Puhler, A., Regenhardt, D., Rupp, O., Sabirova, J.S., Selbitschka, W., Yakimov, M.M., Timmis, K.N., Vorholter, F.J., Weidner, S., Kaiser, O., & Golyshin, P.N. (2006). Genome sequence of the ubiquitous hydrocarbon- degrading marine bacterium Alcanivorax borkumensis. Nature Biotechnology, 24, 997–1004

Smits, T.H., Balada, S.B., Witholt, B., & van Beilen, J.B. (2002). Functional analysis of alkane hydroxylases from gram-negative and gram- positive bacteria. Journal of Bacteriology, 184, 1733–1742.

Thawng, C.N., Park, S.J., Cha, J.H., & Cha, C.J. Stakelama sediminis sp. nov., isolated from tidal flat sediment. (2013). International Journal of Systematic and Evolutionary Microbiology, 63(Pt 2), 560-4. doi: 10.1099/ijs.0.039743-0.

Thompson, J. D., D. G. Higgins, & T. J. Gibson. (1994). CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penaltiesand Weight Matrix Choice. Nucleic Acids Research, 22, 4673-4680.

Throne-Holst, M., Markussen, S., Winnberg, A., Ellingsen, T.E., Kotlar, H.K., & Zotchev, S.B. (2006). Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: the role of two AlkB- type alkane hydroxylases. Applied Microbiology and Biotechnology, 72, 53–360.

van Beilen, J.B., & Funhoff, E.G. (2005). Expanding the alkane oxygenase toolbox: new enzymes and applications. Current Opinion in Biotechnology, 16(3), 308-314.

van Beilen, J.B., Smits, T.H.M., Whyte, L.G, Schorcht, S., Röthlisberger, M., Plaggemeier, T., Engesser, K.H., & Witholt, B. (2002). Alkane hydroxylase homologues in Gram-positive strains. Environment Microbiology, 4:676–682

Van Hamme, J.D., & Ward, O.P. (2001). Physical and metabolic interactions of Pseudomonas sp. strain JA5-B45 and Rhodococcus sp. strain F9-D79 during growth on crude oil and effect of a chemical surfactant on them. Applied Environmental Microbiology, 67, 4874-4879.

von der, W.I., Marques, J.M., Cunha, C.D., Lippi, R.K., Dos Santos, S.C., Rosado, A.S., Lins, U., & Seldin, L. (2006). Identification and biodegradation potential of a novel strain of Dietzia cinnamea isolated from a petroleum-contaminated tropical soil. System Applied Microbiology, 30, 331–339

Wang, L., Tang, Y., Wang, S., Liu, R.L., Liu, M.Z., Zhang, Y., Liang, F.L., Feng, L. (2006). Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles, 10(4), 347-56.

Wang, X.B., Chi, C.Q., Nie, Y., Tang, Y.Q., Tan, Y., et al. (2011). Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain. Bioresources Technology, 102, 7755–7761.

Wang, Z., B.J., Eddie, A.P. Malanoski, W.J ., Hervey, I.V., B., Lin, & S.M.S., Glaven. (2016). Complete genome sequence of Labrenzia sp. strain CP4, isolated from a self-regenerating biocathode biofilm. Genome Announcement, 4(3), e00354-16. doi: 10.1128/genomeA.00354-16.

Widada, J., Nojiri, H., Kasuga, K., Yoshida, T., Habe, H., & Omori, T. (2002). Molecular detection and diversity of polycyclic aromatic hydrocarbon- degrading bacteria isolated from geographically diverse sites. Applied Microbiology and Biotechnology, 58, 202–209.

Yakimov, M.M., Giuliano, L., Denaro, R., Crisafi, E., Chernikova, T.N., Abraham, W.R., Luensdorf, H., Timmis, K.N., & Golyshin, P.N. (2004). Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. International Journal of Systematic and Evolutionary Microbiology, 54, 141-148.

Yan, P.L. (2006). Alkane-degrading functional bacteria, its cultivation method and application. CN1789408, 2006–06–21, CN20041081505 20041217, CHENGDU BIOLOGY RES INST OF TH (CN).

Yopi, Theresia, U.H., Ahmad Thontowi, & Dwi Susilaningsih. (2006). Karakterisasi bakteri pendegradasi minyak bumi dari perairan Muara Kamal, Teluk Jakarta. In Prosiding Seminar Nasional Bioteknologi 2006 (pp. 423- 427). November 15-16, 2006. Cibinong. ISBN: 9789799778932.

Yumoto, I., Nakamura, A., Iwata, H., Kojima, K., Kusumoto, K., Nodasaka, Y., & Matsuyama, H. (2002). Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. International Journal of Systematic and Evolutionary Microbiology, 52, 85-90.

Yurui, Ji., Guannan, Mao, Yingying, Wang, & Bartlam, M. (2013). Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases. Frontiers in Microbiology, 4(58), 1-13.

Yuste, L., Corbella, M.E., Turiegano, M.J., Karlson, U., Puyet, A., & Rojo, F. (2000). Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiology and Ecology, 32, 69–75.

Yuste, L., Corbella, M.E., Turiegano, M.J., Karlson, U., Puyet, A., Rojo, F. (2000). Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiology and Ecology, 32, 69–75.

Zhang, H., Kallimanis, A., Koukkou, A.I., & Drainas, C. (2004). Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Applied Microbiology and Biotechnology, 65,124-131.

Zhang, Z., Hou, Z., Yang, C., Ma, C., & Tao, F. (2011). Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresources Technology, 102, 4111-4116.

Zhou, R., Huang, C., Zhang, A., Bell, S.G., Zhou, W., & Wong, L.L. (2011). Crystallization and prelim-from Novosphingobium aromaticivorans DSM12444. Acta Crystallographica Section F Structural Biology and Crystallization Communicationa, 67(Pt8), 964–967.



  • There are currently no refbacks.

Copyright (c) 2018 ANNALES BOGORIENSES

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Annales Bogorienses Indexed by :





Statistic Visitors