Partial Purification, Characterization, and Application of Extracellular Aspartic Protease from Lactobacillus casei WSP in Producing the Bioactive Peptides with Antibacterial and Antioxidant Activity

Akhmad Solikhin, Apon Zaenal Mustopa, Suharsono Suharsono, Wendry Setiyadi Putranto

Abstract


   Lactobacillus casei WSP-derived an aspartic protease was sequentially purified by using chromatography gel filtration sephadex G-50. It resulted in a 22.81-fold increase of specific activity (51.5 U/mg) with a final yield of 1.9%. The estimated molecular weight of the purified enzyme was 37 kDa and showed gelatinolytic activity in zymogram assay. The enzyme exhibited optimum activity at 40ºC and pH 6 with casein as the substrate. Enzyme activity was significantly inhibited by pepstatin A (0.5 mM and 1 mM), confirming that this enzyme is a group of aspartic proteases, while other inhibitors such as EDTA, PMSF and iodoacetic acid showed no inhibition effect on the activity of enzyme. The addition of metal ion to the enzyme decreased enzyme activity, indicating the proteolytic enzyme was metal ion- dependent. Denaturant such as DDT tended to increase caseinolytic activity. Furthermore, this enzyme was capable of generating the new peptides from skimmed milk with the size 8 kDa, 10 kDa and 15 kDa. These peptides have potential as antibacterial and antioxidant agents.

Keywords


Aspartic protease, Antibacterial, Antioxidant, Peptide

Full Text:

PDF

References


Ahmed, A. S., El-Bassiony, T., Elmalt, L.M., & Ibrahim, H. R. (2015). Identification of potent antioxidant bioactive peptide from goat milk protein. Food Research International, ?. doi: 10.1016/j.foodres.2015.04.032.

Baht, Z. F., & Bhat, H. (2011). Milk and diary product as functional food : a rew. International Journal of Diary Science, 6, 1-12.

Braga-Silva, L. A., & Santos, A. L. S. (2011). Aspartic protease inhibitors as potentitial anti-Candida albicans drug : impact on fungal biology, virulence and pathogenesis. Current Medical Chemistry, 18, 2401-2019.

Budiarto, B. R., Mustopa, A. Z., & Indarmawan, T. (2016). Characterization pf partially extracelluler proteases from bekasam-isolated Lactobacillus plantarum S31 and its application to hydrolyze skimmed milk with antibacterial property. International Food Reseacrh Journal, 23, 340-349.

Chen, C. C., Cho, Y. C., Lai, C. C., & Hsu, W. H. (2009). Purification and characterization of a new rhizopuspepsin from Rhizopus oryzae NBRC 4749. Journal of Agricultural and Food Chemistry, 57, 6742-6747.

Coombs, G. H., Goldberg, D. E., Klemba, M., Berry, C., Kay, J., & Mottram, J. C. (2001). Aspartic protease plasmodium falciparum and other parasitic as drug target. TRENDS in parasitology, 17, 532-537.

Egito, A. S., Girardet, J. M., Miclo, L., Mollé, D., Humbert, G., & Gaillard, J. L. (2001). Susceptibility of Equine κ- and β-caseins to hydrolysis by chymosin. International Dairy Journal, 1, 1885–1893.

Ghosh, A. K., Osswald, H. L., & Prato, G. (2016). Recent progress in the development of HIV-1 protease inhibitors for the treatment of of HIV/AIDS. Journal of Medical Chemistry, 59, 5172-5208.

Gobbetti, M., Smacchi, E., & Corsetti, A. (1996). The proteolytic system of Lactobacillus sanfrascisco CB1 : purification and characterization o a proteinase, a dipeptidase, an aminopeptidase. Applied and Enviromental Microbiology, 62, 3220-3226.

Guevara, M. G., Veríssimo, P., Pires, E., Faro, C., & Daleo, G. R. (2004). Potato aspartic protease : induction, antimicrobila activity, and substrate specificity. Journal of Plant Pathology, 86, 233-238.

Ha, G. E., Chang, O. K., Han, G. S., Ham, J. S., Park, B. Y., & Jeong, S. G. (2015). Comparation of antioxidant activities of hydrolysate of domestic and imported skim milk powder treated with papain. Korean Food Journal Food Science, 35, 360-369.

Hasim, Mustopa, A. Z., Andrianto, N., Fatimah, & Faridah, D. N. (2017). Antioxidant production of lactic acid bacteria isolated from Indonesian traditional fermented buffalo milk (dadih). Journal of Pharmacy and Biological Science, 12, 89-94.

Hirano, J., Okamoto, T., Sugiyama, Y., Suzuki, T., Kasukabe, S., Tokunaga, M., et al. (2017). Characterization of SPP inhibitors suppressing propagation of HCV and protozoa. Proceeding of the National Academy of Sciences of the United States of America. www.pnas.org/cgi/doi/10.1073/pnas.

Hsiao, N. W., Chen, Y., Kuan, Y. C., Lee, Y. C., Lee, S. K., Chan, H. H., et al. (2014). Purification and characterization of an aspartic protease from the Rhizopus oryzae protease extract, peptidase R. Electronic Journal of Biotechnology, 17, 89-94.

Inglingstad, R. A., Devold, T., Eriksen, E. K., Holm, H., Jacobsen, M., Liland, K. H., et al. (2010). Comparison of the digestion of casein and whey protein in unique, bovine, caprine and human milk by human gastrointestinal enzyme. Dairy Science Technology, 90, 549-563.

Jenssen, H., & Hancock, R. E. W. (2009). Antimicrobial properties of lactoferrin. Biochimie, 91, 19-29.

Kitts, D. D., & Weiler, K. (2003). Bioactive protein and peptides from food source. Application of bioprocesses used isolation and recovery. Current Phamaceutical. Design, 9, 1309-1323.

Kleiner, D. E., & Stetler-Stevenson, W. G. (1994). Quantitative zimography : detection a picogram quantities of gelatinases. Analytical Biochemistry, 218, 325-329.

Kumar, M., & Srivastava, S. (2010). Antilisterial activity of a broad-spectrum bacteriocin, enterocin LR/6 from Enterococcus faecium LR/6. Applied Biochemistry and Biotechnology, 162, 698-706.

Kumar, S., Sharma, N. S., Saharan, M. R., & Singh, R. (2005). Extracellular acid protease expressed from Rhizopus oryzae: Purification and characterization. Process Biochemistry, 40, 1701-1705.

Kurniati, N., Mubarik, N. R., & Desniar. (2015). Optimization of production of protease by Lactobacillus plantarum SK (5) from bekasam with responce surface methodology. Pakistan Journal of Biotechnology, 12, 123-130.

Kusumaningtyas, E., Widiastuti, R., Kusumaningrum, H. D., & Suhartono, M. T. (2015). Antimicrobial and antioxidative activities of peptides from goat milk hydrolyzed with various protease. Jurnal Ilmu Ternak dan Veteriner, 20, 175-183.

Laemmi, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriofage T4. Nature, 227, 680-685.

Meisel, H., & Bockelmann, W. (1999). Bioactive peptide encrypted in milk proteins :proteolytic activation and thropho-functional properties. Antonie van Leeuwenhoek, 76, 207-215.

Mohanty, D. P., Mohapatra, S., & Sahu, P. S. (2016). Milk derived bioactive peptides and their impact on human health-a review. Saudi Journal of Biologycal Science, 23, 577-583.

Palsaniya, P., Rinki, M., Beejawat, N., Sethi, S., & Gupta, B. L. (2012). Optimization of alkaline protease production from bacteria isolated from soil. Journal of Microbiology and Biotechnology Research, 2, 695-701.

Pan, D., Luo, Y., & Tanokura, M. (2004). Antihypertensive peptides from skimmed milk hydrolysate digested by cell-free extract of Lactobacillus helveticus JCM1004. Food Chemistry, 91, 123-129.

Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnologycal aspect of microbial proteases. Microbiology and Molecular Biology Reviews, 62, 597-635.

Raser, K. J., Posrner, A., & Wang, K. K. (1995). Casein zymography : a methode to study mu-calpain, m-calpain, and their inhibitory agents. Archives of Biochemistry and Biophysics, 319, 211-216.

Romano, C. S., Abadi, K., Repetto, V., Vojnov, A. A., & Moreno, S. (2009). Synergistic antioxidant and antibacterial activity of rosemary plus butylated derivatives. Food Chemistry, 115, 456-461.

Schoen, C., Reichard, U., Monod, M., Kratzin, H., & Ruchel, R. (2002). Molecular cloning of an extracellular aspartic proteinase from Rhizopus microsporus and evidence for its expression during infection. Medical Mycology, 40, 61-67.

Sumantha, A., Larroche, C., & Pandey, A. (2006). Microbiology and industrial biotechnology of food grade proteases-a prespective. Food Technology and Biotechnologi, 44, 211-220.

Szcecsi, P. B. (1992). The aspartic proteases. Scandinavian Journal of Clinical and Laboratory Investigation, 52, 5-22.

Tsujita, Y., & Endo, A. (1976). Purification and characterization of the two molecular forms of Aspergillus oryzae acid protease. Biochemica et Biophysica Acta, 445, 194-204.

Umezawa, H., Aoyagi, T., Morishima, H., Matsuzuki, H., Hamada, M., Takeuchi, T. (1970). Pepstatin, a new pepsin inhibitor produced by Actinomycetes. Journal of Antibiotics, 23, 259-262.

Vicente, J., Arriaga, D., Valle, P., Soler, J., & Eslava, A. (1996). Purification and characterization of an extracelluler aspartate protease from Phycomyces blakesleeanus. Fungal Genetic and Biology, 20, 115-124.

Vishwanatha, K. S., Appu Rao, A. G., Singh, S. A. (2009). Characterization of acid protease expressed from Aspergillus oryzae MTCC 5341. Food Chemistry, 7, 114-402.

Yadav, R. P., Patel, A. K., & Jagannadham, M. W. (2012). Neriifolin S, a dimeric serine protease from Euphorbia nerifolia Linn : purification and biochemical characterization. Food Chemistry, 132, 1296-1304.

Yamamoto, S., & Hirooka, H. (1974). Production of glutaminase by Aspergillus sojae. Journal of Fermentation Technology, 52, 564-569.

Yegin, S., Fernandez-Lahore, M., Salgado, A. J. G., Guvenc, E., Goksungur, Y., & Tari, C. (2011). Aspatic proteinases from Mucor spp. in cheese manufacturing. Applied Microbial and Biotechnology, 89, 949-960.

Yin, L. J., Hsu, T. H., & Jiang, S. T. (2013). Characterization of acidic protease from Aspergillus oryzae BCRC 32720. Journal of Agricultural and Food Chemistry, 6, 662-666.

Zhang, X. Q., Liu, Q. H., Zhang, Q. G., Wang, H. X., & Ng, T. B. (2010). Purification and molecular cloning of a serin protease from mushrom Hypsizigus marmoreus. Process Biochemistry, 45, 724-730.

Zou, T. B., He, T. P., Li, H. B., Tang, H. W., Xia, E. Q. (2016). The structure – activity relationship of the antioxidant peptides from natural protein. Molecules, 21, 1-14.




DOI: http://dx.doi.org/10.14203/ann.bogor.2018.v22.n2.47-56

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 ANNALES BOGORIENSES

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Annales Bogorienses Indexed by :

     

  

 

 

Statistic Visitors