DNA Condensation Study of Fully Synthesized Lipopeptide-Based Transfection Agent for Gene Delivery Vehicle

Tarwadi Tarwadi, Heni Rachmawati, Rahmana E. Kartasasmita, Sabar Pambudi, Alfan Danny Arbianto, Dewi Esti Restiani, Sukmadjaja Asyarie


   The main requirement of transfection agent has to condense DNA in nanoparticle size, protect the DNA from nucleases and other degrading enzymes during its transport in cell cytoplasm and nucleus and should not toxic to target cells. In this research, lipopeptide composed of palmitoyl (C-16) and short peptide sequence have been designed fully synthesized and tested to DNA condensation capability and toxicity. The DNA condensation study was performed using EtBr exclusion assay and cytotoxicity determination was carried out by colorimetric MTT assay. It was revealed that lipopeptide-based transfection agent of Pal-CKKHH and Pal-CKKHH-YGRKKRRQRRR-PKKKRKV condensed DNA molecules efficiently. The lipopeptide was less toxic compared to Lipofectamine and Poly-L-Lysine, that shown by 90% of CHO-K1 cells remained viable when they were treated with 4.36 µM Pal-CKKHHYGRKKRRQRRR-PKKKRKV. Meanwhile, there were only ~75% and 80% of CHO-K1 viable cells when it was treated with PLL and Lipofectamine®2000, respectively. Moreover, cell viability of HepG2 was ~ 75% after treated with 2.18 µM of Pal-CKKHH-YGRKKRRQRRR-PKKKRKV and decreased to ~65% when the lipopeptide concentration increased to 8.72 M. In summary, the synthesized lipopeptide condenses DNA molecules efficiently, less toxic than Lipofectamine®2000 and PLL and has possibility to be explored as a non-viral gene delivery vehicle.


lipopeptide, transfection agent, gene delivery, and DNA condensation study

Full Text:



Belguise-Valladier, P., & Behr, J. P. (2001). Nonviral gene delivery: Towards artificial viruses. Cytotechnology, 35(3), 197-201. doi:10.1023/A:1013133605406

Blessing, T., Remy, J. S., & Behr, J. P. (1998). Monomolecular collapse of plasmid DNA into stable virus-like particles. Proc Natl Acad Sci U S A, 95(4), 1427-1431.

Bloomfield, V. A. (1996). DNA condensation. Curr Opin Struct Biol, 6(3), 334-341.

Dauty, E., Remy, J. S., Blessing, T., & Behr, J. P. (2001). Dimerizable cationic detergents with a low cmc condense plasmid DNA into nanometric particles and transfect cells in culture. J Am Chem Soc, 123(38), 9227-9234.

Doh, K. O. (2015). Validation of Heterodimeric TAT-NLS Peptide as a Gene Delivery Enhancer. J Microbiol Biotechnol, 25(6), 788-794.

Dubruel, P., Christiaens, B., Rosseneu, M., Vandekerckhove, J., Grooten, J., Goossens, V., & Schacht, E. (2004). Buffering properties of cationic polymethacrylates are not the only key to successful gene delivery. Biomacromolecules, 5(2), 379-388. doi:10.1021/bm034438d

Dubruel, P., Christiaens, B., Vanloo, B., Bracke, K., Rosseneu, M., Vandekerckhove, J., & Schacht, E. (2003). Physicochemical and biological evaluation of cationic polymethacrylates as vectors for gene delivery. Eur J Pharm Sci, 18(3-4), 211-220.

Floch, V., Delepine, P., Guillaume, C., Loisel, S., Chasse, S., Le Bolc'h, G., . . . Ferec, C. (2000). Systemic administration of cationic phosphonolipids/DNA complexes and the relationship between formulation and lung transfection efficiency. Biochim Biophys Acta, 1464(1), 95-103.

Friend, D. S., Papahadjopoulos, D., & Debs, R. J. (1996). Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochimica et Biophysica Acta, 1278(1), 41-50.

Ishiguro, S., Alhakamy, N. A., Uppalapati, D., Delzeit, J., Berkland, C. J., & Tamura, M. (2017). Combined Local Pulmonary and Systemic Delivery of AT2R Gene by Modified TAT Peptide Nanoparticles Attenuates Both Murine and Human Lung Carcinoma Xenografts in Mice. J Pharm Sci, 106(1), 385-394. doi:10.1016/j.xphs.2016.08.023

Jeong, J. H., & Park, T. G. (2002). Poly(L-lysine)-g-poly(D,L-lactic-co-glycolic acid) micelles for low cytotoxic biodegradable gene delivery carriers. J Control Release, 82(1), 159-166.

Katebi, S., Esmaeili, A., Ghaedi, K., & Salimi, P. (2018). Transfection efficiency and cytotoxicity of polyethyleneimine-coated magnetic iron oxide nanoparticles in rooster sperm cells. J Cell Biochem. doi:10.1002/jcb.26911

Koloskova, O. O., Gileva, A. M., Drozdova, M. G., Grechihina, M. V., Suzina, N. E., Budanova, U. A., . . . Khaitov, M. R. (2018). Effect of lipopeptide structure on gene delivery system properties: Evaluation in 2D and 3D in vitro models. Colloids Surf B Biointerfaces, 167, 328-336. doi:10.1016/j.colsurfb.2018.04.003

Koloskova, O. O., Nikonova, A. A., Budanova, U. A., Shilovskiy, I. P., Kofiadi, I. A., Ivanov, A. V., . . . Khaitov, M. R. (2016). Synthesis and evaluation of novel lipopeptide as a vehicle for efficient gene delivery and gene silencing. Eur J Pharm Biopharm, 102, 159-167. doi:10.1016/j.ejpb.2016.03.014

Lesage, D., Cao, A., Briane, D., Lievre, N., Coudert, R., Raphael, M., . . . Taillandier, E. (2002). Evaluation and optimization of DNA delivery into gliosarcoma 9L cells by a cholesterol-based cationic liposome. Biochim Biophys Acta, 1564(2), 393-402.

Loisel, S., Floch, V., Le Gall, C., & Ferec, C. (2001). Factors influencing the efficiency of lipoplexes mediated gene transfer in lung after intravenous administration 1 *. J Liposome Res, 11(2-3), 127-138. doi:10.1081/lpr-100108457

Malik, Y. S., Sheikh, M. A., Xing, Z., Guo, Z., Zhu, X., Tian, H., & Chen, X. (2018). Polylysine-modified polyethylenimine polymer can generate genetically engineered mesenchymal stem cells for combinational suicidal gene therapy in glioblastoma. Acta Biomater, 80, 144-153. doi:10.1016/j.actbio.2018.09.015

Mannisto, M., Vanderkerken, S., Toncheva, V., Elomaa, M., Ruponen, M., Schacht, E., & Urtti, A. (2002). Structure-activity relationships of poly(L-lysines): effects of pegylation and molecular shape on physicochemical and biological properties in gene delivery. J Control Release, 83(1), 169-182.

Nayerossadat, N., Maedeh, T., & Ali, P. A. (2012). Viral and nonviral delivery systems for gene delivery. Advanced biomedical research, 1, 27-27. doi:10.4103/2277-9175.98152

Parker, S. E., Vahlsing, H. L., Serfilippi, L. M., Franklin, C. L., Doh, S. G., Gromkowski, S. H., . . . Norman, J. (1995). Cancer gene therapy using plasmid DNA: safety evaluation in rodents and non-human primates. Hum Gene Ther, 6(5), 575-590. doi:10.1089/hum.1995.6.5-575

Petersen, H., Kunath, K., Martin, A. L., Stolnik, S., Roberts, C. J., Davies, M. C., & Kissel, T. (2002). Star-shaped poly(ethylene glycol)-block-polyethylenimine copolymers enhance DNA condensation of low molecular weight polyethylenimines. Biomacromolecules, 3(5), 926-936.

Pouton, C. W., & Seymour, L. W. (1998). Key issues in non-viral gene delivery. Adv Drug Deliv Rev, 34(1), 3-19.

Rajagopalan, R., Xavier, J., Rangaraj, N., Rao, N. M., & Gopal, V. (2007). Recombinant fusion proteins TAT-Mu, Mu and Mu-Mu mediate efficient non-viral gene delivery. J Gene Med, 9(4), 275-286. doi:10.1002/jgm.1014

Ritter, W., Plank, C., Lausier, J., Rudolph, C., Zink, D., Reinhardt, D., & Rosenecker, J. (2003). A novel transfecting peptide comprising a tetrameric nuclear localization sequence. J Mol Med (Berl), 81(11), 708-717. doi:10.1007/s00109-003-0483-2

Rudolph, C., Schillinger, U., Plank, C., Gessner, A., Nicklaus, P., Muller, R., & Rosenecker, J. (2002). Nonviral gene delivery to the lung with copolymer-protected and transferrin-modified polyethylenimine. Biochim Biophys Acta, 1573(1), 75-83.

Slimani, H., Guenin, E., Briane, D., Coudert, R., Charnaux, N., Starzec, A., . . . Cao, A. (2006). Lipopeptide-based liposomes for DNA delivery into cells expressing neuropilin-1. J Drug Target, 14(10), 694-706. doi:10.1080/10611860600947607

Szumilak, M., Merecz, A., Strek, M., Stanczak, A., Inglot, T. W., & Karwowski, B. T. (2016). DNA Interaction Studies of Selected Polyamine Conjugates. International journal of molecular sciences, 17(9), 1560. doi:10.3390/ijms17091560.

Tarwadi, Jazayeri, J. A., Prankerd, R. J., & Pouton, C. W. (2008). Preparation and in vitro evaluation of novel lipopeptide transfection agents for efficient gene delivery. Bioconjug Chem, 19(4), 940-950. doi:10.1021/bc700463q

Wadia, J. S., & Dowdy, S. F. (2003). Modulation of cellular function by TAT mediated transduction of full length proteins. Curr Protein Pept Sci, 4(2), 97-104.

Wang, S., Fumoto, S., Miyamoto, H., Tanaka, M., & Nishida, K. (2018). Edaravone, a cytoprotective drug, enhances transgene expression mediated by lipoplexes in HepG2 cells and mice. Int J Pharm, 548(1), 173-181. doi:10.1016/j.ijpharm.2018.06.068

Wightman, L., Kircheis, R., Rossler, V., Carotta, S., Ruzicka, R., Kursa, M., & Wagner, E. (2001). Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J Gene Med, 3(4), 362-372. doi:10.1002/jgm.187

Zhou, X., & Huang, L. (1994). DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim Biophys Acta, 1189(2), 195-203.

DOI: http://dx.doi.org/10.14203/ann.bogor.2018.v22.n2.65-74


  • There are currently no refbacks.

Copyright (c) 2018 ANNALES BOGORIENSES

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Annales Bogorienses Indexed by :





Statistic Visitors