Overexpression of OsHox-6 Gene Enhanced Tiller Number in Rice But Induced Yield Penalty

Syamsidah Rahmawati, Chairunnisa Chairunnisa, Eva Erdayani, Satya Nugroho, Amy Estiati


OsHox-6, belongs to the transcription factor homeodomain leucine zipper (HD-Zip) protein sub-family I, has unknown function. This study was aimed to characterize the phenotypes of two homozygous transgenic rice lines (S29-62-2 and S.40.4-158-1) containing an extra copy of OsHox-6 gene under the control of a rice constitutive promoter, OsLEA3, and to evaluate their tolerance to water stress. A real-time quantitative PCR (qRT-PCR) showed that the transcript expression of OsHox-6 gene in the transgenic lines increased 5-10 folds under a normal irrigation and 10-20 folds after exposure to water stress conditions as compared to its wild type control. Transgenic plants overexpressing OsHox-6 exhibited phenotypic alteration at the normal irrigation by inducing tiller formation, suggesting a decrease in the apical dominance. Transgenic plants also showed significant enhancement in the total grain number, however, the number of empty grains  also increased significantly (~16-22%).  After imposed to the water stress, the number of empty grains in the transgenic lines was even higher (up to 83% in average). Furthermore, observations on the water loss rates, relative water contents and drought resistance indices (DRI) suggested that the overexpression of OsHox-6 did not significantly increase tolerance to water stress.  Further research is required to reveal the detailed mechanisms of OsHox-6 in response to water and other abiotic stresses.


rice, drought, IR64 Sub1, HD-Zip, OsHox-6

Full Text:



Agalou A., S. Purwantomo, E. Overnas, A. Johannesson, X. Zhu, A. Estiati, R.J. de Kam, P. Engstrom, I.H. Slamet-Loedin, Z. Zhu, M. Wang, L. Xiong, A.H. Meijer, & P.B.F. Ouwerkerk. 2008. A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Molecular Biology, 66:87-103.

Ariel F.D., P.A. Manavella, C.A. Dezar, & R.L. Chan. 2007. The true story of the HD-Zip family. Trends in Plant Science, 12:419-426.

Ariel F., A. Diet , M. Verdenaud , V. Gruber, F. Frugier, R. Chan, & M. Crespi. 2010. Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-zip I Transcription Factor HB1. Plant Cell, 22:2171-2183.

Bhattacharjee A, J.P. Khurana, & M. Jain. 2016. Characterization of rice homeobox genes, OsHOX22 and OsHOX24, and over-expression of OsHOX24 in transgenic Arabidopsis suggest their role in abiotic stress response. Frontiers in Plant Sci., 7:627. doi: 10.3389/fpls.2016.00627

Capella M., P.A. Ribone, A.L. Arce, & R.L. Chan. 2016. Homeodomain–leucine zipper transcription factors: structural features of these proteins, unique to plants in Plant Transcription Factor First Edition Chapter 7 (Gonzales D. Ed.), p: 113-126.

Dai M., Y. Hu, Q. Ma, Y. Zhao, & D-X. Zhou. 2008. Functional analysis of rice HOMEOBOX4 (Oshox4) gene reveals a negative function in gibberellin. Plant Molecular Biology, 66:289–301.

Deng X., J. Phillips, A.H. Meijer, F. Salamini, & D. Bartels. 2002. Characterization of five novel dehydration-responsive homeo-domain leucine zipper genes from the resurrection plant Craterostigma plantagineum. Plant Molecular Biology, 49:601-610.

Dezar C.A., G.M. Gago, D.H. Gonzalez, & R.L. Chan. 2005. HAHB-4, a sunflower homeo-box-leucine zipper gene, confers drought tolerance to Arabidopsis thaliana plants. Transgen Res., 14:429-440.

Ding Z., L. Fu, Y. Yan, W. Tie, Z. Xia, W. Wang, M. Peng, W. Hu, & J. Zhang. 2017. Genome-wide characterization and expres-sion profiling of HD-Zip gene family related to abiotic stress in cassava. PLoS ONE,12(3):e0173043. doi:10.1371/journal. pone.0173043

Farshadfar E., M.M. Poursiahbidi, & S.M. Safavi. 2013. Assesment of drought tolerance in land races of bread wheat based on resistance/tolerance indices. Iternational Journal of Advanced Biological and Biomedical Research, 1:143-158.

Fischer, R.A. & R. Maurer, 1978. Drought resistance in spring wheat cultivars. I. Grain yield response. Australian Journal of Agricultural Research, 29: 897–907.

Frank W., J. Philips, F. Salamini, & D. Bartels. 1998. Two dehidration inducible transcrip from the resurrection plant Craterostigma plantagineum encode interacting homeo-domain leucin zipper protein. The Plant Journal, 15:413-421.

Hjellstrom M., A.S.B. Olsson, P. Engstrom, & E.M. Soderman. 2003. Constitutive expression of the water deficit-inducible homeobox gene ATHB7 in transgenic Arabidopsis causes a suppression of stem elongation growth. Plant Cell & Environ-ment, 26:1127-1136.

Hu H. & L. Xiong. 2014. Genetic engineering and breeding of drought-resistant crops. Annual Review of Plant Biology, 65:715-741.

Huang X., M. Duan, J. Liao, X. Yuan, H. Chen, J. Feng, J. Huang, & H-S. Zhan. 2014. OsSLI1, a Homeodomain containing transcription activator, involves abscisic acid related stress response in rice (Oryza sativa L.). The Scientific World Journal, Vol. 2014, Article ID 809353, 9 pages http://dx.doi.org/ 10.1155/2014/809353

Hussien A., E. Tavakol, D.S. Horner, M. Munoz-Amatrianin, G.J. Muehlbauer, & L. Rossini. 2014. Genetics of tillering in rice and barley. Plant Genome, 7. doi: 10.3835/ plantgenome2013.10.0032

Kholova J., C.T. Hash, A. Kakkera, M. Kocova, & V. Vadez. 2010. Constitutive water conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br]. Journal of Experimental Botany, 61:369-377.

Olsson A.S.B., P. Engstrom & E. Soderman. 2004. The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Molecular Biology, 55: 663–677.

Prigge M.J., D. Otsuga, J.M. Alonso, J.R. Ecker, G.N. Drews, & S.E. Clarka. 2005. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in mitogen-activated protein kinase. Plant Cell, 17:61-76.

Rahmawati S. 2012. Genetic transformation of rice using Rhyzobium and Agrobacterium and functional analysis of OsHox-6 gene. Bogor Agricultural Institute. p. 107.

Rerie W.G., K.A. Feldmann, & M.D. Marks. 1994. The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes & Development, 8:1388-1399.

Ribone P.A., M. Capella, A.L. Arce, & R.L. Chan. 2016. What do we know about homeodomain-leucine zipper I transcription factors? Functional and biotechnological considerations. In Plant Transcription Factors First Edition Chapter 22 (Gonzales D. Ed.). Elsevier. p:343-356.

Scarpella E., S. Rueb, K.J.M. Boot, & A.H. Meijer. 2000. A role for the rice homeobox gene oshox1 in provascular cell fate commitment. Development, 127: 3655-3669.

Shinozaki K. & K. Yamaguchi-Shinozaki. 1997. Gene expression and signal transduction in water-stress response. Journal of Plant Physiology, 11: 327-334.

Tang, N., H. Zhang, X. Li, J. Xiao, & L. Xiong. 2012. Constitutive activation of transcript-ion factor OsbZIP46 improves drought tolerance in rice. Journal of Plant Physiology, 158:1755-1768.

Wang X-M., Y-Y. Liang, L. Li, C-W. Gong, H-P. Wang, X-X. Huang, S-C. Li, Q-M. Deng, J. Zhu, A-P. Zheng, P. Li, S-Q. Wang. 2015. Identification and cloning of tillering-related genes OsMAX1 in rice. Rice Science, 22(6): 255-263.

Wang J., K. Lu, H. Nie, Q. Zeng, B. Wu, J. Qian, & Z. Fang. 2018. Rice nitrate transporter OsNPF7.2 positively regulates tiller number and grain yield. Rice, 11:12 https://doi.org/10.1186/s12284-018-0205-6

Xiao B., Y. Huang, N. Tang, & L. Xiong. 2007. Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theoretical and Applied Genetics, 115:35-46.

Yu H., X. Chen, Y.Y. Hong, Y. Wang, P. Xu, S.D. Ke, H.Y. Liu, J.K. Zhu, D.J. Oliver, & C.B. Xiang. 2008. Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell, 20:1134-1151.

Yue Y., M. Zhang, J. Zhang, X. Tian, L. Duan, & Z. Li. 2012. Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. Journal of Experimental Botany, doi: 10.1093/jxb/ers069.

Yue H., D. Shu, M. Wang, G. Xing, H. Zhan,X. Du, W. Song & X. Nie. 2018. Genome-Wide Identification and ExpressionAnalysis of the HD-Zip Gene Family in Wheat (Triticum aestivum L.). Genes. 9, 70. doi:10.3390/genes9020070

Zhang S.W., C.H. Li, J. Cao, Y.C. Zhang, S.Q. Zhang, Y.F. Xia, D.Y. Sun, & Y. Sun. 2009. Altered architecture and enhanced drought tolerance in rice via down-regulation of Indole-3-Acetic Acid by TLD1/OsGH3.13 activation. Journal of Plant Physiology, 151:1889-1901.

Zhang S., I. Haider, W. Kohlen, L. Jiang, H. Bouwmeester, A.H. Meijer, H. Schluepmann, C-M. Liu, P.B.F. Ouwerkerk. 2012. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Molecular Biology, doi: 10.1007/s11103-012-9967-1

Zhang Z., X. Chen, X. Guan, Y. Liu, H. Chen, T. Wang, L.D.O. Mouekouba, J. Li & A. Wang. 2014. A genome-wide survey of homeodomain-leucine zipper genes and analysis of cold-responsive HD-Zip I members’ expression in tomato, Bioscience Biotechnology and Biochemistry, 78:8, 1337-1349, doi: 10.1080/09168451.2014. 923292

DOI: http://dx.doi.org/10.14203/ann.bogor.2019.v23.n1.30-40


  • There are currently no refbacks.

Copyright (c) 2019 ANNALES BOGORIENSES

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Annales Bogorienses Indexed by :





Statistic Visitors